Locked History Actions

Skirtumas „NaujasŽodisTemplate“

Pakeitimai tarp versijų 93 ir 107 (patvirtinamos 14 versijos)
Versija 93 nuo 2013-05-05 08:03:30
Dydis: 8250
Redaktorius: Deivydas
Komentaras: Deivydo Šabaro EPKf-09
Versija 107 nuo 2020-12-06 14:35:46
Dydis: 15286
Redaktorius: EdgarZubel
Komentaras:
Pašalinimai yra pažymėti taip. Pridėjimai yra pažymėti taip.
Eilutė 1: Eilutė 1:
== Žodis angliškai ==
HTTPS Protocol
= TLS 1.0 pažeidžiamumai =
= Turinys =
1. Įvadas
Eilutė 4: Eilutė 5:
##Įrašykite terminą anglų kalba
== HTTPS Protokolas ==
##Įrašykite lietuvišką termino vertimą
2. TLS protokolas
Eilutė 8: Eilutė 7:
2.1. TLS rankos paspaudimas
Eilutė 9: Eilutė 9:
---- 3. TLS 1.0 pažeidžiamumai
Eilutė 11: Eilutė 11:
== ĮVADAS == 3.1. POODLE
Eilutė 13: Eilutė 13:
Šiuo metu Web paslaugos netelpa tik į HTTP protokolo rėmus, todėl sukurta daug patobulintų protokolų, skirtų įvairioms kliento reikmėms tenkinti. Vienas iš populiariausių papildomų servisų yra HTTPS (Secure HTTP) – saugus HTTP protokolas, kurį UNIX sistemoje valdo SSL (Secure SocketLayer).[1]
SSL (Secure Socket Layer) - tai rinkos standartu tapusi technologija, kuri garantuoja saugų duomenų perdavimą internetu. Tai kriptografinis protokolas skirtas informacijos, sklindančios Internete apsaugojimui šifruojant.
HTTPS technologijos šiuo metu, yra labai plačiai naudojamos elektroninėje komercijoje ir bankinėse sistemose.
3.2. BEAST
Eilutė 17: Eilutė 15:
3.3. CRIME
Eilutė 18: Eilutė 17:
== BENDRA INFORMACIJA APIE HTTPS == 3.4. BREACH
Eilutė 20: Eilutė 19:
HTTPS – HTTP protokolo praplėtimas, palaikantis šifravimą. Duomenys perduodami HTTP protokolui „įpakuojami“ į SSL arba TLS protokolą, tuo pačiu užtikrinamas duomenų saugumas. Skirtingai nuo HTTP, HTTPS naudoją 433 TCP kanalą. [2]
HTTPS arba S-HTTP - tai Saugus HTTP protokolas (Secure Hypertext Transfer Protocol). Jis orientuotas siųsti saugioms žinutėms ir naudoti kartu su HTTP protokolu. Jis yra sukurtas egsituoti kartu su HTTP žinučių modeliu ir būti lengvai integruojamu HTTP programose.
S-HTTP siūlo galybę saugumo mechanizmų HTTP klientams ir serveriams. S-HTTP siūlo vienodas galimybes ir serveriams ir klientams išsaugant transakcijų modelį ir įgyvendinant HTTP charakteristikas.
Keletas kriptografinių žinučių formatų gali būti integruota į S-HTTP klientus ir serverius. HTTPS (S-HTTP) palaiko veikimą tarp daugybes įgyvendinimų ir yra suderinamas su HTTP. S-HTTP suprantantys klientai gali bendrauti su S-HTTP nesuprantančiais serveriais ir atvirkščiai, tačiau transakcijos jau nebenaudos S-HTTP saugumo savybių.
S-HTTP nereikalauja kliento dalies viešo rakto sertifikatų (ar viešojo rakto), nes jis palaiko simetrinį tik-rakto veikiantį režimą. Tai yra labai svarbu, nes tai reiškia jog gali įvykti spontaniškos privačios transakcijos nereikalaujančios individualiam vartotojui turėti viešą raktą. Nors HTTPS gali pasinaudoti visur išdėstyta sertifikatų infrastruktūra, tačiau jo išsidėstymas nereikalauja to.
S-HTTP palaiko nuo pradžios iki galo saugias transakcijas. Klientai gali būti iš anksto informuojami pradėti apsaugotą transakciją (dažniausiai naudojantis informacija pateikta antraščių eilutėse). Tai gali būti naudojama palaikyti pavyzdžiui užpildomoms formoms. Naudojant S-HTTP galima nesiųsti jokios svarbios informacijos neapsaugotu pavidalu.
S-HTTP suteikia pilną lankstumą naudojant kriptografinius algoritmus, režimus ir parametrus. Pasirinkimo nebuvimas naudojamas leisti klientams ir serveriams sutikti dėl transakcijų režimo kriptografinių algoritmų ir sertifikatų parinkimo.
Taip pat populiarus būdas saugiai perduoti duomenis tinkle yra naudoti HTTP protokolą kitame transporto lygyje, kaip kad TLS arba SSL.
S-HTTP užklausos – atsakymai
S-HTTP užklausos žinutės sintaksiškai tokios pačios kaip ir HTTP, tačiau skiriasi antraščių kiekis bei žinutės turinys yra užkoduotas.
Kad skirtųsi nuo HTTP ir būtų specialiai perduodamos žinutės, užklausos eilutėje turėtų būti nurodytas specialus metodas ”Secure“, užklausos kelias turi būti ”*“ o naudojamo protokolo versija ”Secure-HTTP/1.4“.
S-HTTP atsakymo eilutės taip pat turi turėti naudojamo protokolo versiją ”Secure-HTTP/1.4“ bei visada pateikti būvio kodą 200 ir jo argumentą OK, kas nurodytų jog visos transakcijos praėjo sėkmingai. Vartotojas apie transakcijos sėkmę spręstų pagal gautus duomenis. Tai neleidžia analizuoti užklausų sėkmingumo. [5]
 
== SSL IR TLS ==
3.5. Heartbleed
Eilutė 35: Eilutė 21:
SSL (angl Secure Socket Layer – apsaugotų sluoksnių protokolas) – kriptografinis protokolas, užtikrinantis saugų domenų perdavimo Interneto tinklais. Šio protokolo naudojimo metu sudaromas saugus sujungimas tarp kliento ir tarnybinės stoties.
Skirtumas tarp TLS ir SSL yra nežymus, todėl toliau plačiau kalbėsiu apie tik apie SSL.
Klientas inicijuoja SSL web jungtį nurodant URL HTTPS: vietoj HTTP:. Naudojamas sesijos raktas, simetrinis slaptas raktas, skirtas tik vienai tranzakcijai įvykdyti.
SSL vykdo šias funkcijas:
• Autentifikuoja serverį klientui;
• Sukuria užkoduotą ryšį tarp abiejų pusių;
SSL yra tarp TCP/IP protokolo ir taikomųjų. programų protokolo.
SSL duomenų šifravimui naudoja tiek simetrinę, tiek ir asimetrinę kriptografiją.
Kadangi simetrinė kriptografija yra žymiai greitesnė už asimetrinę, tai ji naudojama persiunčiant visus duomenis, taip taupant persiuntimo laiką. Tačiau iškyla viena problema: kaip apsaugoti šifro raktą, kuris abiejose susijungimo pusėse bus tas pats? T.y. kaip serveriui ir klientui nustatyti šifro raktą, kad tarpininkas (kuris peržiūri visą tinklo srautą) negalėtų gauti šifro rakto ir tuo pačiu mūsų persiunčiamų duomenų. Taigi simetrinis šifro raktas persiunčiamas pasinaudojus asimetrine kriptografija. Serveris atsiunčia jums savo viešajį raktą, kuriuo jūs užšifruojate sugeneruotą simetrinį šifro raktą, taip jį apsaugodami nuo tarpininko. Kadangi asimetrinės kriptografijos raktai kuriami taip, kad žinant viešąjį raktą būtų neįmanoma sužinoti privataus rakto, su kuriuo informacija dešifruojama, jūsų simetrinis šifro raktas persiunčiamas saugiu kanalu ir galima pradėti sąlyginai saugiai siųsti realius duomenis.
SSL protokolo veikimą supaprastintai galima pavaizduoti taip:[6]
1. Vartotojas ateina į apsaugotą svetainę.
2. Serveris patvirtina svetainės tapatybę pasirašydamas sertifikatą ir nusiųsdamas jį klientui. Naršyklė panaudoja sertifikato viešąjį raktą (viešasis raktas gaunamas kartu su sertifikatu) serverio sertifikato savininko tapatybei patikrinti.
3. Naršyklė patikrina, ar sertifikatas buvo išduotas žinomo sertifikavimo paslaugų teikėjo. Jeigu sertifikatas yra išduotas nežinomo paslaugų teikėjo, naršyklė apie tai informuoja vartotoją.
4. Vartotojas pats gali patikrinti ar sertifikavimo paslaugų teikėjas išdavė sertifikatą tikrai tai svetainei, į kurią atėjo vartotojas.
5. Serveris reikalauja vartotojo skaitmeninio sertifikato, kad patikrinti jo tapatybę.
6. Vartotojas pasirenka, kurį iš jo turimų sertifikatų (žinoma, jeigu jis turi daugiau nei vieną sertifikatą) parodys serveriui.
7. Serveris sukuria ir užkoduoja seanso raktą bei saugiai nusiunčia jį internetu, ir tokiu būdu sukuriamas saugus virtualus kanalas tarp vartotojo naršyklės ir Web serverio.
SSL seanso metu galima būtu išskirti 3 pagrindines fazes:[3]
• Dialogas tarp kliento ir tarnybinės stoties kurio metu pasirenkamas šifravimo algoritmas
• Raktų pasikeitimas pagrystąs atvirojo rakto kriptografija ir identifikavimas pagrįstas sertifikatu.
• Simetriniais šifravimo algoritmais užšifruotu duomenų perdavimas.
Taigi primoje fazėje klientas ir tarnybinė stotis aparia kriptografinio algoritmo pasirinkimą tolesniam seansui. SSL 3.0 protokolo versijoje galimi šie algoritmai:
• Asimetriniam šifravimui: RSA, Diffie-Hellman, DSA arba Fortezza;
• Simetriniam duomenų šifravimui: RC2, RC4, IDEA, DES, Triple DES arba AES;
• „Sausainiukų“ funkcijom: MD5 arba SHA.
4. Išvados
Eilutė 61: Eilutė 23:
== IŠVADOS == 5. Literatūra
Eilutė 63: Eilutė 25:
HTTPS protokolas paremta SSL technologija puiki priemonė saugiai keistis duomenimis Internete.
Simetrinis šifro raktas persiunčiamas pasinaudojus asimetrine kriptografija. Asimetrinės kriptografijos raktai kuriami taip, kad žinant viešąjį raktą būtų neįmanoma sužinoti privataus rakto.
HTTPS protokolas tinka naudoti:
• E-versle;
• Elektroninėje bankininkystei;
• Visur kur reikalingas saugus duomenų perdavimas.
= Įvadas =
Transporto lygmens saugumo protokolas (''angl. TLS(Transport Layer Security))'' yra sukurtas komunikacijos saugumui naudojant kompiuterinį tinklą užtikrinti. Šis protokolas yra naudojamas informacijos kodavimui tarp aplikacijos ir serverio. TLS taipogi yra naudojamas elektroninių laiškų, žinučių, IP telefonijos ''(angl. VoIP(Voice over IP))'' informacijos šifravime.
Eilutė 70: Eilutė 28:
== LITERATŪRA == TLS kilo iš saugiųjų sujungimų lygmens ''(angl. SSL(Secure Socket Layers))'' protokolo, kuris buvo sukurtas Netscape įmonės 1994 metais. SSL protokolo pagrindinė paskirtis buvo užtikrinti saugius interneto seansus. SSL 1.0 versija nebuvo oficialiai išleista dėl neatitinkamų saugumo reikalavimų. SSL 2.0 buvo išleistas 2011 metais, tačiau netrukus buvo pakeistas SSL 3.0 versija, kurios veikimo principu ir remiasi TLS protokolas.
Eilutė 72: Eilutė 30:
1. http://ru.wikipedia.org/wiki/HTTPS
2. http://ru.wikipedia.org/wiki/TLS
3. http://ru.wikipedia.org/wiki/SSL
4. http://miraged.ten.lt
5. http://www.webopedia.com/TERM/C/cryptography.html
TLS protokolas buvo pasiūlytas „Internet Engineering Task Force“ (IETF) organizacijos. Pirmoji jo versija buvo paskelbta 1999 metais. Kaip ir SSL protokolas, šis turi tris versijas. Pirmoji TLS 1.0 versija buvo SSL 3.0 patobulinimu. Skirtumai tarp TLS 1.0 ir SSL 3.0 nėra drastiški, tačiau pakankamai svarūs, kad šitie du protokolai veiktų nepriklausomai vienas nuo kito.

= TLS protokolas =
TLS protokolas atsako už šiuos veiksnius:

 * '''Šifravimas''': užšifruoja siunčiamą informaciją;
 * '''Autentifikacija''': užtikrina, kad informaciją perduodantys asmenys nėra apsimetėliai;
 * '''Sąžiningumas''': užtikrina, kad perduodami duomenys nėra suklastoti.

Tam, kad internetinė svetainė arba aplikacija turėtų galimybę naudoti TLS protokolą, turi būti iš anksto sudiegtas TLS sertifikatas pagrindiniame serveryje. Šio protokolo sertifikatas yra išduodamas asmeniui arba organizacijai, kuriai priklauso domenas. Sugeneruotas sertifikatas turi savyje informaciją apie domeno savininką bei serverio viešąjį raktą.

== TLS rankos paspaudimas ==
TLS sujungimas yra inicijuojamas naudojant TLS rankos paspaudimą. Iniciacija prasideda tuomet, kai vartotojas nori pasiekti internetinę svetainę naudodamas [[http://www.ims.mii.lt/EKŽ/h/hipertekstas.html|hipertekstų]] persiuntimo [[http://www.ims.mii.lt/EKŽ/p/protokolas.html|protokol]]ą ''(angl. HTTPS(Hypertext Transfer Protocol Secure))''. Tokiu atveju naršyklė išsiunčia užklausą internetinės svetainės serveriui. TLS rankos paspaudimas taipogi įvyksta tada, kuomet kiti komunikavimo įrankiai naudoja HTTPS, pavyzdžiui IP telefonija arba DNS per HTTPS užklausos.

TLS rankos paspaudimas įvyksta po to, kai yra užmezgamas TCP ryšys su TCP rankos paspaudimo pagalba.

Vykstant TLS rankos paspaudimui, vartotojas ir serveris kartu atlieka nurodytus veiksmus:

 * Nustatoma TLS protokolo versija;
 * Nustatomi šifravimo algoritmai;
 * Serverio autentifikacija naudojant serverio viešąjį raktą ir SSL sertifikato parašą;
 * Generuojamas seanso raktas, kad būtų panaudota simetrinio rakto kriptografija po rankos paspaudimo pabaigos.

TLS rankos paspaudimą sudaro duomenų paketai arba pranešimai, kurie buvo sukeisti tarp vartotojo ir serverio.

TLS rankos paspaudimo žingsnių skaičius priklauso nuo dvejų šalių naudojamo rakto sukeitimo algoritmo ir šifravimo algoritmo. Dažniausiai yra naudojamas RSA viešojo rakto sukeitimo algoritmas, jo pavyzdys:

1. '''Vartotojo pasisveikinimo pranešimas''': vartotojas inicijuoja rankos paspaudimą išsiųsdamas pasisveikinimo pranešimą serveriui. Pranešimą sudaro duomenys apie tai, kokią TLS protokolo versiją bei šifravimo algoritmus palaiko vartotojas ir atsitiktinai parinktų baitų eilutė;

2. '''Serverio pasisveikinimo pranešimas''': kaip atsaką vartotojui, serveris siunčia pranešimą su SSL sertifikatu, pasirinktu šifravimo algoritmu ir atitinkamai atsitiktinai parinktų baitų eilutę, kurią sugeneravo serveris;

3. '''Autentifikacija''': vartotojas patikrina gautą serverio SSL sertifikatą pasinaudodamas sertifikavimo institucija, kuri jį išdavė. Tai patvirtina, jog serveris yra autentiškas;

4. '''„Premaster secret“ pranešimas''': vartotojas siunčia dar vieną atsitiktinai sugeneruotų baitų eilutę vadinamą „premaster secret“. Ši baitų eilutė yra šifruota su viešuoju raktu ir gali būti iššifruota serverio su privačiu raktu;

5. '''Privataus rakto panaudojimas''': serveris iššifruoja „premaster secret“ pranešimą;

6. '''Seanso raktų generavimas''': vartotojas ir serveris generuoja seanso raktus pasinaudodami savo prieš tai išsiųstomis baitų eilutėmis. Generavimo rezultatai turi sutapti;

7. '''Vartotojas pasiruošęs''': vartotojas siunčia „pasiruošęs“ pranešimą, kuris yra šifruotas su seanso raktu;

8. '''Serveris pasiruošęs''': serveris siunčia „pasiruošęs“ pranešimą, kuris yra šifruotas su seanso raktu;

9. '''Simetrinio rakto kriptografija atlikta''': rankos paspaudimas atliktas, informacijos dalinimasis vyksta naudojant seanso raktus.

{{attachment:1pav.png}}

 . 1 pav. TLS rankos paspaudimas

Kuomet duomenys yra užšifruoti ir autentifikuoti, jiems yra suteikiamas pranešimo autentifikacijos kodas (MAC). Gavėjas gali patikrinti MAC ir įsitikinti, jog gauti duomenys nėra suklastoti.

== TLS 1.0 pažeidžiamumai ==
Mokėjimo kortelių pramonės apsaugos standartų tarybą (''angl. PCI Council'') 2018 metų birželio mėnesį pateikė organizacijoms pasiūlymą migruoti iš TLS 1.0 versijos į TLS 1.1 arba naujesnę. Tų pačių metų spalio mėnesį „Apple“, „Google“, „Microsoft“ ir „Mozilla“ paskelbė, jog pašalins TLS 1.0 ir 1.1 versijas 2020 metų kovo mėnesį.

== POODLE ==
„POODLE“ ''(Padding Oracle On Downgraded Legacy Encryption)'' yra vienas iš atakos tipų, paskelbtas 2014 metų spalį. Nors POODLE taikosi į SSL 3.0 protokolo versiją, tam tikri TLS 1.0/1.1 diegimai taipogi gali būti pažeisti dėl neatitinkamo užpildymo. Ši ataka vadovaujasi dviem įrankiais:

 * Iki šiol kai kurie serveriai ir vartotojai vis dar naudoja senas SSL/TLS versijas;
 * SSL 3.0 arba kitos protokolo versijos pažeidžiamumas, kuris yra susijęs su užpildymo blokavimu.

Vartotojas inicijuodamas rankos paspaudimą siunčia palaikomų SSL/TLS protokolų sąrašą. Tuo tarpu kibernetinis užpuolikas perima siunčiamų duomenų srautą atlikdamas „žmogaus viduryje“ (''angl. MITM(man-in-the-middle)'') ataką. Šios atakos dėka užpuolikas slapta perduoda ir keičia dviejų šalių, manančių, kad jos tiesiogiai bendrauja tarpusavyje, perduodamą informaciją. Tokių būdu piktavalis apsimeta esąs serveris, kol vartotojas nesutinka naudoti SSL 3.0 arba kitą pažeidžiamą protokolą.

{{attachment:2pav.png}}

 . 2 pav. POODLE ataka

Šio protokolo pažeidžiamumas yra kriptografijos bloko šifro algoritme (''angl. CBC(Cipher Block Chaining)''). Bloko šifrai priima tik tuos blokus, kurie yra tam tikro ilgio. Jeigu paskutiniame bloke esančių duomenų skaičius nėra bloko kartotinis skaičius, likusi vieta yra užpildoma. Serveris ignoruoja užpildymo turinį ir tikrina užpildymo ilgį. Jeigu užpildymo ilgis yra tinkamas, serveris suteikia pranešimo autentifikacijos kodą (MAC). Tokiu būdu serveris negali patikrinti ar užpildymo turinis buvo pakeistas.

Užpuolikas gali iššifruoti užšifruotą bloką keisdamas užpildymo baitus ir stebėti serverio atsaką. Maksimalus užklausų skaičius SSL 3.0 protokolui, kad iššifruoti vieną baitą, yra 256. Naudojant automatizuotus įrankius, piktavalis gali gauti siunčiamų duomenų turinį.

== BEAST ==
Naršyklės išnaudojimas prieš SSL/TLS (''angl. BEAST(Browser Exploit Against SSL/TLS)'') ataka buvo atskleista 2011 metų rugsėjį. Ši ataka gali būti panaudota naršyklėse, kurios naudoja SSL 3.0, TLS 1.0 arba senesnius protokolus. Užpuolikas gali iššifruoti tarp dviejų šalių siunčiamus duomenis pasinaudodamas kriptografijos bloko šifro algoritmo (''angl. CBC(Cipher Block Chaining)'') pažeidžiamumą.

Ši ataka vyksta iš vartotojo pusės, kuomet piktavalis naudoja MITM su tikslu įterpti paketą į TLS srautą. Tai suteikia galimybę atspėti inicializacijos vektorių (''angl. IV(Initialization Vector'')), kuris yra atsitiktinai sugeneruotas šifruotų duomenų pradžioje. Užpuolikas atsitiktinai parenka inicializacijos vektorių, kuris yra įskiepytas į pranešimą, ir lygina gautą rezultatą su blokų, kurį nori iššifruoti.

Tam, kad sėkmingai atlikti BEAST ataką, piktavalis privalo turėti prieigą prie aukos naršyklės, kadangi matydamas naršyklės HTML kodą gali atrasti sau reikalingą informaciją atakai atlikti.

== CRIME ==
Glaudinimo santykio informacijos nutekėjimo ataka ''(angl. CRIME(Compression Ratio Info-leak Made Easy)) ''yra atliekama pasinaudojant vartotojo siunčiamo pasisveikinimo pranešimą serveriui. Glaudinimas naudojamas SSL/TLS protokole tam, kad apriboti siunčiamų duomenų kiekį per tam tikrą laiką. Užmegzti ryšį galima ir nenaudojant glaudinimo. Sumažinimas ''(angl. DEFLATE) ''yra dažnai naudojamas duomenų suspaudimo algoritmas šioje srityje.

Serveris atsakydamas į vartotojo atsiųstą pasisveikinimo pranešimą išsiunčia savo sugeneruotą pasisveikinimo pranešimą, kuriame yra nurodomas glaudinimo metodas.

{{attachment:3pav.png}}
  3 pav. Serverio pasisveikinimo pranešime siunčiama informacija gauta „Wireshark“ įrankio dėka

Nagrinėjant 3 pav. esančią informaciją galima pastebėti, kad glaudinimo metodo reikšmė yra nulis. Tai reiškia, kad glaudinimo metodas nebus naudojamas.

Pagrindinis glaudinimo algoritmų veikimo principas yra tai, kad pasikartojančių baitų seka yra pakeičiama rodykle ''(angl. pointer)'' į pirmąjį objektą toje sekoje.

{{attachment:4pav.png}}
  4 pav. Rodyklės priskyrimas naudojant glaudinimo algoritmą

Pavyzdžiui, užpuolikas nori gauti savo aukos slapuką ''(angl. cookie)''. Piktavalis žino, kad svetainė, kurią bando pasiekti vartotojas, sukuria seanso slapuką pavadinimu „x“. Užpuolikas žinodamas, kad „DEFLATE“ glaudinimo algoritmas pakeičia pasikartojančius baitus tuo pasinaudoja. Jis įskiepija į vartotojo slapuką tokius duomenis „Cookie:x=0“. Serveris savo ruožtu pridės tik „0“ reikšmę, kadangi „Cookie:x=“ jau buvo siunčiamas vartotojo slapuke ir yra pasikartojantis.

{{attachment:5pav.png}}
  5 pav. CRIME ataka

Tokiu būdu užpuolikas po vieną prideda atsitiktines reikšmes stebėdamas atsako ilgį. Jeigu pridėjus reikšmę atsako ilgis sumažėjo, pridėta reikšmė buvo panaudota vartotojo slapuke. Kuomet pridėjus reikšmę atsako ilgis padidėja, ji nebuvo panaudota vartotojo slapuke.

{{attachment:6pav.png}}
  6 pav. Slapuko reikšmių parinkimas ir atsako stebėjimas

== BREACH ==
„BREACH“ ''(Browser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext) ''atakos veikimo principas yra panašus į CRIME, tačiau ši ataka taikosi į [[http://www.ims.mii.lt/EKŽ/h/hipertekstas.html|hipertekstų]] persiuntimo protokolo ''(angl. HTTP(Hypertext Transfer Protocol)) ''glaudinimo algoritmus. Užpuolikas priverstinai užmezgą ryšį tarp vartotojo naršyklės ir svetainės, kurioje yra naudojamas TLS protokolas. Po to, kai ryšys buvo sėkmingai užmegztas, piktavalis stebi duomenų srautą tarp vartotojo ir serverio naudodamas MITM ''(man-in-the-middle) ''ataką.

Pažeidžiama internetinė programa turi atitikti šiuos reikalavimus:
 * Aptarnaujama serverio, kuris naudoja HTTP glaudinimą;
 * Atspindi vartotojo įvestį HTTP pranešimų dėka;
 * Atspindi prieigos raktą HTTP pranešime.

== Heartbleed ==
„Heartbleed“ yra „OpenSSL“ kriptografijos bibliotekos saugos klaida, kuri yra plačiai naudojama TLS protokole. Šis plėtinys yra naudojamas tam, kad išlaikyti užmegztą ryšį tarp dviejų funkcionuojančių šalių.

Vartotojas siunčia serveriui „Heartbeat“ signalą su duomenimis ir duomenų ilgių. Serveris savo ruožtu atsako į „Heartbeat“ signalą siųsdamas duomenis ir duomenų ilgį, kurį gavo iš vartotojo.

{{attachment:7pav.png}}
  7 pav. „Heartbeat“ signalas

„Heartbleed“ veikimo principas buvo pagrįstas tuo, kad vartotojas išsiunčia klaidingą nurodytų duomenų ilgį, o serveris atsako su nurodytu duomenų ilgių ir jį atitinkančią atsitiktine informaciją iš savo duomenų bazės.

{{attachment:8pav.png}}
  8 pav. „Heartbleed“ ataka

Atliekant tokius veiksmus, iš serverio galima gauti neskelbtinus duomenis su kurių pagalba užpuolikas gali stebėti visą duomenų srautą keliaujantį į serverį.

== Išvados ==
SSL/TLS protokolai yra naudojami siunčiamiems duomenims apsaugoti. Duomenų apsauga priklauso ne tik nuo protokolo bei naudojamo serverio ar kitos įrangos konfigūravimo, bet ir nuo vartotojo atidumo ir kompetencijos.Efektyviausias būdas apsisaugoti nuo SSL/TLS atakų – atnaujinti naudojamo protokolo versiją. Egzistuoja numatyti saugumo standartai, kurie tiksliai apibrėžia kokius protokolus reikia naudoti, o kuriuos vengti.

== Literatūra ==
1. „What is TLS (Transport Layer Security)?“ https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/ [Interaktyvus] [žiūrėta 2020 m. Gruodžio 5 d.]

2. „What Happens in a TLS Handshake? | SSL Handshake“ https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/ [Interaktyvus] [žiūrėta 2020 m. Gruodžio 5 d.]

3. „TLS 1.0 and TLS 1.1 Are No Longer Secure“ https://www.packetlabs.net/tls-1-1-no-longer-secure/ [Interaktyvus] [žiūrėta 2020 m. Gruodžio 5 d.]

4. „Deprecation of TLS 1.0“ https://www.comodo.com/e-commerce/ssl-certificates/tls-1-deprecation.php [Interaktyvus] [žiūrėta 2020 m. Gruodžio 5 d.]

5. „TLS Security 6: Examples of TLS Vulnerabilities and Attacks“ https://www.acunetix.com/blog/articles/tls-vulnerabilities-attacks-final-part/ [Interaktyvus] [žiūrėta 2020 m. Gruodžio 5 d.]

6. „What Is the POODLE Attack?“ https://www.acunetix.com/blog/web-security-zone/what-is-poodle-attack/ [Interaktyvus] [žiūrėta 2020 m. Gruodžio 6 d.]

7. „Man in the middle (MITM) attack“ https://www.imperva.com/learn/application-security/man-in-the-middle-attack-mitm/ [Interaktyvus] [žiūrėta 2020 m. Gruodžio 6 d.]

8. „What Is the BEAST Attack“ https://www.acunetix.com/blog/web-security-zone/what-is-beast-attack/ [Interaktyvus] [žiūrėta 2020 m. Gruodžio 6 d.]

9. „CRIME SSL/TLS attack“ https://www.acunetix.com/vulnerabilities/web/crime-ssl-tls-attack/ [Interaktyvus] [žiūrėta 2020 m. Gruodžio 6 d.]

10. „SSL, GONE IN 30 SECONDS“ http://breachattack.com/#howitworks [Interaktyvus] [žiūrėta 2020 m. Gruodžio 6 d.]

11. „The Heartbleed Bug“ https://heartbleed.com/ [Interaktyvus] [žiūrėta 2020 m. Gruodžio 6.]

TLS 1.0 pažeidžiamumai

Turinys

1. Įvadas

2. TLS protokolas

2.1. TLS rankos paspaudimas

3. TLS 1.0 pažeidžiamumai

3.1. POODLE

3.2. BEAST

3.3. CRIME

3.4. BREACH

3.5. Heartbleed

4. Išvados

5. Literatūra

Įvadas

Transporto lygmens saugumo protokolas (angl. TLS(Transport Layer Security)) yra sukurtas komunikacijos saugumui naudojant kompiuterinį tinklą užtikrinti. Šis protokolas yra naudojamas informacijos kodavimui tarp aplikacijos ir serverio. TLS taipogi yra naudojamas elektroninių laiškų, žinučių, IP telefonijos (angl. VoIP(Voice over IP)) informacijos šifravime.

TLS kilo iš saugiųjų sujungimų lygmens (angl. SSL(Secure Socket Layers)) protokolo, kuris buvo sukurtas Netscape įmonės 1994 metais. SSL protokolo pagrindinė paskirtis buvo užtikrinti saugius interneto seansus. SSL 1.0 versija nebuvo oficialiai išleista dėl neatitinkamų saugumo reikalavimų. SSL 2.0 buvo išleistas 2011 metais, tačiau netrukus buvo pakeistas SSL 3.0 versija, kurios veikimo principu ir remiasi TLS protokolas.

TLS protokolas buvo pasiūlytas „Internet Engineering Task Force“ (IETF) organizacijos. Pirmoji jo versija buvo paskelbta 1999 metais. Kaip ir SSL protokolas, šis turi tris versijas. Pirmoji TLS 1.0 versija buvo SSL 3.0 patobulinimu. Skirtumai tarp TLS 1.0 ir SSL 3.0 nėra drastiški, tačiau pakankamai svarūs, kad šitie du protokolai veiktų nepriklausomai vienas nuo kito.

TLS protokolas

TLS protokolas atsako už šiuos veiksnius:

  • Šifravimas: užšifruoja siunčiamą informaciją;

  • Autentifikacija: užtikrina, kad informaciją perduodantys asmenys nėra apsimetėliai;

  • Sąžiningumas: užtikrina, kad perduodami duomenys nėra suklastoti.

Tam, kad internetinė svetainė arba aplikacija turėtų galimybę naudoti TLS protokolą, turi būti iš anksto sudiegtas TLS sertifikatas pagrindiniame serveryje. Šio protokolo sertifikatas yra išduodamas asmeniui arba organizacijai, kuriai priklauso domenas. Sugeneruotas sertifikatas turi savyje informaciją apie domeno savininką bei serverio viešąjį raktą.

TLS rankos paspaudimas

TLS sujungimas yra inicijuojamas naudojant TLS rankos paspaudimą. Iniciacija prasideda tuomet, kai vartotojas nori pasiekti internetinę svetainę naudodamas hipertekstų persiuntimo protokolą (angl. HTTPS(Hypertext Transfer Protocol Secure)). Tokiu atveju naršyklė išsiunčia užklausą internetinės svetainės serveriui. TLS rankos paspaudimas taipogi įvyksta tada, kuomet kiti komunikavimo įrankiai naudoja HTTPS, pavyzdžiui IP telefonija arba DNS per HTTPS užklausos.

TLS rankos paspaudimas įvyksta po to, kai yra užmezgamas TCP ryšys su TCP rankos paspaudimo pagalba.

Vykstant TLS rankos paspaudimui, vartotojas ir serveris kartu atlieka nurodytus veiksmus:

  • Nustatoma TLS protokolo versija;
  • Nustatomi šifravimo algoritmai;
  • Serverio autentifikacija naudojant serverio viešąjį raktą ir SSL sertifikato parašą;
  • Generuojamas seanso raktas, kad būtų panaudota simetrinio rakto kriptografija po rankos paspaudimo pabaigos.

TLS rankos paspaudimą sudaro duomenų paketai arba pranešimai, kurie buvo sukeisti tarp vartotojo ir serverio.

TLS rankos paspaudimo žingsnių skaičius priklauso nuo dvejų šalių naudojamo rakto sukeitimo algoritmo ir šifravimo algoritmo. Dažniausiai yra naudojamas RSA viešojo rakto sukeitimo algoritmas, jo pavyzdys:

1. Vartotojo pasisveikinimo pranešimas: vartotojas inicijuoja rankos paspaudimą išsiųsdamas pasisveikinimo pranešimą serveriui. Pranešimą sudaro duomenys apie tai, kokią TLS protokolo versiją bei šifravimo algoritmus palaiko vartotojas ir atsitiktinai parinktų baitų eilutė;

2. Serverio pasisveikinimo pranešimas: kaip atsaką vartotojui, serveris siunčia pranešimą su SSL sertifikatu, pasirinktu šifravimo algoritmu ir atitinkamai atsitiktinai parinktų baitų eilutę, kurią sugeneravo serveris;

3. Autentifikacija: vartotojas patikrina gautą serverio SSL sertifikatą pasinaudodamas sertifikavimo institucija, kuri jį išdavė. Tai patvirtina, jog serveris yra autentiškas;

4. „Premaster secret“ pranešimas: vartotojas siunčia dar vieną atsitiktinai sugeneruotų baitų eilutę vadinamą „premaster secret“. Ši baitų eilutė yra šifruota su viešuoju raktu ir gali būti iššifruota serverio su privačiu raktu;

5. Privataus rakto panaudojimas: serveris iššifruoja „premaster secret“ pranešimą;

6. Seanso raktų generavimas: vartotojas ir serveris generuoja seanso raktus pasinaudodami savo prieš tai išsiųstomis baitų eilutėmis. Generavimo rezultatai turi sutapti;

7. Vartotojas pasiruošęs: vartotojas siunčia „pasiruošęs“ pranešimą, kuris yra šifruotas su seanso raktu;

8. Serveris pasiruošęs: serveris siunčia „pasiruošęs“ pranešimą, kuris yra šifruotas su seanso raktu;

9. Simetrinio rakto kriptografija atlikta: rankos paspaudimas atliktas, informacijos dalinimasis vyksta naudojant seanso raktus.

1pav.png

  • 1 pav. TLS rankos paspaudimas

Kuomet duomenys yra užšifruoti ir autentifikuoti, jiems yra suteikiamas pranešimo autentifikacijos kodas (MAC). Gavėjas gali patikrinti MAC ir įsitikinti, jog gauti duomenys nėra suklastoti.

TLS 1.0 pažeidžiamumai

Mokėjimo kortelių pramonės apsaugos standartų tarybą (angl. PCI Council) 2018 metų birželio mėnesį pateikė organizacijoms pasiūlymą migruoti iš TLS 1.0 versijos į TLS 1.1 arba naujesnę. Tų pačių metų spalio mėnesį „Apple“, „Google“, „Microsoft“ ir „Mozilla“ paskelbė, jog pašalins TLS 1.0 ir 1.1 versijas 2020 metų kovo mėnesį.

POODLE

„POODLE“ (Padding Oracle On Downgraded Legacy Encryption) yra vienas iš atakos tipų, paskelbtas 2014 metų spalį. Nors POODLE taikosi į SSL 3.0 protokolo versiją, tam tikri TLS 1.0/1.1 diegimai taipogi gali būti pažeisti dėl neatitinkamo užpildymo. Ši ataka vadovaujasi dviem įrankiais:

  • Iki šiol kai kurie serveriai ir vartotojai vis dar naudoja senas SSL/TLS versijas;
  • SSL 3.0 arba kitos protokolo versijos pažeidžiamumas, kuris yra susijęs su užpildymo blokavimu.

Vartotojas inicijuodamas rankos paspaudimą siunčia palaikomų SSL/TLS protokolų sąrašą. Tuo tarpu kibernetinis užpuolikas perima siunčiamų duomenų srautą atlikdamas „žmogaus viduryje“ (angl. MITM(man-in-the-middle)) ataką. Šios atakos dėka užpuolikas slapta perduoda ir keičia dviejų šalių, manančių, kad jos tiesiogiai bendrauja tarpusavyje, perduodamą informaciją. Tokių būdu piktavalis apsimeta esąs serveris, kol vartotojas nesutinka naudoti SSL 3.0 arba kitą pažeidžiamą protokolą.

2pav.png

  • 2 pav. POODLE ataka

Šio protokolo pažeidžiamumas yra kriptografijos bloko šifro algoritme (angl. CBC(Cipher Block Chaining)). Bloko šifrai priima tik tuos blokus, kurie yra tam tikro ilgio. Jeigu paskutiniame bloke esančių duomenų skaičius nėra bloko kartotinis skaičius, likusi vieta yra užpildoma. Serveris ignoruoja užpildymo turinį ir tikrina užpildymo ilgį. Jeigu užpildymo ilgis yra tinkamas, serveris suteikia pranešimo autentifikacijos kodą (MAC). Tokiu būdu serveris negali patikrinti ar užpildymo turinis buvo pakeistas.

Užpuolikas gali iššifruoti užšifruotą bloką keisdamas užpildymo baitus ir stebėti serverio atsaką. Maksimalus užklausų skaičius SSL 3.0 protokolui, kad iššifruoti vieną baitą, yra 256. Naudojant automatizuotus įrankius, piktavalis gali gauti siunčiamų duomenų turinį.

BEAST

Naršyklės išnaudojimas prieš SSL/TLS (angl. BEAST(Browser Exploit Against SSL/TLS)) ataka buvo atskleista 2011 metų rugsėjį. Ši ataka gali būti panaudota naršyklėse, kurios naudoja SSL 3.0, TLS 1.0 arba senesnius protokolus. Užpuolikas gali iššifruoti tarp dviejų šalių siunčiamus duomenis pasinaudodamas kriptografijos bloko šifro algoritmo (angl. CBC(Cipher Block Chaining)) pažeidžiamumą.

Ši ataka vyksta iš vartotojo pusės, kuomet piktavalis naudoja MITM su tikslu įterpti paketą į TLS srautą. Tai suteikia galimybę atspėti inicializacijos vektorių (angl. IV(Initialization Vector)), kuris yra atsitiktinai sugeneruotas šifruotų duomenų pradžioje. Užpuolikas atsitiktinai parenka inicializacijos vektorių, kuris yra įskiepytas į pranešimą, ir lygina gautą rezultatą su blokų, kurį nori iššifruoti.

Tam, kad sėkmingai atlikti BEAST ataką, piktavalis privalo turėti prieigą prie aukos naršyklės, kadangi matydamas naršyklės HTML kodą gali atrasti sau reikalingą informaciją atakai atlikti.

CRIME

Glaudinimo santykio informacijos nutekėjimo ataka (angl. CRIME(Compression Ratio Info-leak Made Easy)) yra atliekama pasinaudojant vartotojo siunčiamo pasisveikinimo pranešimą serveriui. Glaudinimas naudojamas SSL/TLS protokole tam, kad apriboti siunčiamų duomenų kiekį per tam tikrą laiką. Užmegzti ryšį galima ir nenaudojant glaudinimo. Sumažinimas (angl. DEFLATE) yra dažnai naudojamas duomenų suspaudimo algoritmas šioje srityje.

Serveris atsakydamas į vartotojo atsiųstą pasisveikinimo pranešimą išsiunčia savo sugeneruotą pasisveikinimo pranešimą, kuriame yra nurodomas glaudinimo metodas.

3pav.png

  • 3 pav. Serverio pasisveikinimo pranešime siunčiama informacija gauta „Wireshark“ įrankio dėka

Nagrinėjant 3 pav. esančią informaciją galima pastebėti, kad glaudinimo metodo reikšmė yra nulis. Tai reiškia, kad glaudinimo metodas nebus naudojamas.

Pagrindinis glaudinimo algoritmų veikimo principas yra tai, kad pasikartojančių baitų seka yra pakeičiama rodykle (angl. pointer) į pirmąjį objektą toje sekoje.

4pav.png

  • 4 pav. Rodyklės priskyrimas naudojant glaudinimo algoritmą

Pavyzdžiui, užpuolikas nori gauti savo aukos slapuką (angl. cookie). Piktavalis žino, kad svetainė, kurią bando pasiekti vartotojas, sukuria seanso slapuką pavadinimu „x“. Užpuolikas žinodamas, kad „DEFLATE“ glaudinimo algoritmas pakeičia pasikartojančius baitus tuo pasinaudoja. Jis įskiepija į vartotojo slapuką tokius duomenis „Cookie:x=0“. Serveris savo ruožtu pridės tik „0“ reikšmę, kadangi „Cookie:x=“ jau buvo siunčiamas vartotojo slapuke ir yra pasikartojantis.

5pav.png

  • 5 pav. CRIME ataka

Tokiu būdu užpuolikas po vieną prideda atsitiktines reikšmes stebėdamas atsako ilgį. Jeigu pridėjus reikšmę atsako ilgis sumažėjo, pridėta reikšmė buvo panaudota vartotojo slapuke. Kuomet pridėjus reikšmę atsako ilgis padidėja, ji nebuvo panaudota vartotojo slapuke.

6pav.png

  • 6 pav. Slapuko reikšmių parinkimas ir atsako stebėjimas

BREACH

„BREACH“ (Browser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext) atakos veikimo principas yra panašus į CRIME, tačiau ši ataka taikosi į hipertekstų persiuntimo protokolo (angl. HTTP(Hypertext Transfer Protocol)) glaudinimo algoritmus. Užpuolikas priverstinai užmezgą ryšį tarp vartotojo naršyklės ir svetainės, kurioje yra naudojamas TLS protokolas. Po to, kai ryšys buvo sėkmingai užmegztas, piktavalis stebi duomenų srautą tarp vartotojo ir serverio naudodamas MITM (man-in-the-middle) ataką.

Pažeidžiama internetinė programa turi atitikti šiuos reikalavimus:

  • Aptarnaujama serverio, kuris naudoja HTTP glaudinimą;
  • Atspindi vartotojo įvestį HTTP pranešimų dėka;
  • Atspindi prieigos raktą HTTP pranešime.

Heartbleed

„Heartbleed“ yra „OpenSSL“ kriptografijos bibliotekos saugos klaida, kuri yra plačiai naudojama TLS protokole. Šis plėtinys yra naudojamas tam, kad išlaikyti užmegztą ryšį tarp dviejų funkcionuojančių šalių.

Vartotojas siunčia serveriui „Heartbeat“ signalą su duomenimis ir duomenų ilgių. Serveris savo ruožtu atsako į „Heartbeat“ signalą siųsdamas duomenis ir duomenų ilgį, kurį gavo iš vartotojo.

7pav.png

  • 7 pav. „Heartbeat“ signalas

„Heartbleed“ veikimo principas buvo pagrįstas tuo, kad vartotojas išsiunčia klaidingą nurodytų duomenų ilgį, o serveris atsako su nurodytu duomenų ilgių ir jį atitinkančią atsitiktine informaciją iš savo duomenų bazės.

8pav.png

  • 8 pav. „Heartbleed“ ataka

Atliekant tokius veiksmus, iš serverio galima gauti neskelbtinus duomenis su kurių pagalba užpuolikas gali stebėti visą duomenų srautą keliaujantį į serverį.

Išvados

SSL/TLS protokolai yra naudojami siunčiamiems duomenims apsaugoti. Duomenų apsauga priklauso ne tik nuo protokolo bei naudojamo serverio ar kitos įrangos konfigūravimo, bet ir nuo vartotojo atidumo ir kompetencijos.Efektyviausias būdas apsisaugoti nuo SSL/TLS atakų – atnaujinti naudojamo protokolo versiją. Egzistuoja numatyti saugumo standartai, kurie tiksliai apibrėžia kokius protokolus reikia naudoti, o kuriuos vengti.

Literatūra

1. „What is TLS (Transport Layer Security)?“ https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/ [Interaktyvus] [žiūrėta 2020 m. Gruodžio 5 d.]

2. „What Happens in a TLS Handshake? | SSL Handshake“ https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/ [Interaktyvus] [žiūrėta 2020 m. Gruodžio 5 d.]

3. „TLS 1.0 and TLS 1.1 Are No Longer Secure“ https://www.packetlabs.net/tls-1-1-no-longer-secure/ [Interaktyvus] [žiūrėta 2020 m. Gruodžio 5 d.]

4. „Deprecation of TLS 1.0“ https://www.comodo.com/e-commerce/ssl-certificates/tls-1-deprecation.php [Interaktyvus] [žiūrėta 2020 m. Gruodžio 5 d.]

5. „TLS Security 6: Examples of TLS Vulnerabilities and Attacks“ https://www.acunetix.com/blog/articles/tls-vulnerabilities-attacks-final-part/ [Interaktyvus] [žiūrėta 2020 m. Gruodžio 5 d.]

6. „What Is the POODLE Attack?“ https://www.acunetix.com/blog/web-security-zone/what-is-poodle-attack/ [Interaktyvus] [žiūrėta 2020 m. Gruodžio 6 d.]

7. „Man in the middle (MITM) attack“ https://www.imperva.com/learn/application-security/man-in-the-middle-attack-mitm/ [Interaktyvus] [žiūrėta 2020 m. Gruodžio 6 d.]

8. „What Is the BEAST Attack“ https://www.acunetix.com/blog/web-security-zone/what-is-beast-attack/ [Interaktyvus] [žiūrėta 2020 m. Gruodžio 6 d.]

9. „CRIME SSL/TLS attack“ https://www.acunetix.com/vulnerabilities/web/crime-ssl-tls-attack/ [Interaktyvus] [žiūrėta 2020 m. Gruodžio 6 d.]

10. „SSL, GONE IN 30 SECONDS“ http://breachattack.com/#howitworks [Interaktyvus] [žiūrėta 2020 m. Gruodžio 6 d.]

11. „The Heartbleed Bug“ https://heartbleed.com/ [Interaktyvus] [žiūrėta 2020 m. Gruodžio 6.]